Near-linear response of mean monsoon strength to a broad range of radiative forcings.

نویسندگان

  • William R Boos
  • Trude Storelvmo
چکیده

Theoretical models have been used to argue that seasonal mean monsoons will shift abruptly and discontinuously from wet to dry stable states as their radiative forcings pass a critical threshold, sometimes referred to as a "tipping point." Further support for a strongly nonlinear response of monsoons to radiative forcings is found in the seasonal onset of the South Asian summer monsoon, which is abrupt compared with the annual cycle of insolation. Here it is shown that the seasonal mean strength of monsoons instead exhibits a nearly linear dependence on a wide range of radiative forcings. First, a previous theory that predicted a discontinuous, threshold response is shown to omit a dominant stabilizing term in the equations of motion; a corrected theory predicts a continuous and nearly linear response of seasonal mean monsoon strength to forcings. A comprehensive global climate model is then used to show that the seasonal mean South Asian monsoon exhibits a near-linear dependence on a wide range of isolated greenhouse gas, aerosol, and surface albedo forcings. This model reproduces the observed abrupt seasonal onset of the South Asian monsoon but produces a near-linear response of the mean monsoon by changing the duration of the summer circulation and the latitude of that circulation's ascent branch. Thus, neither a physically correct theoretical model nor a comprehensive climate model support the idea that seasonal mean monsoons will undergo abrupt, nonlinear shifts in response to changes in greenhouse gas concentrations, aerosol emissions, or land surface albedo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Climate Feedbacks in CCSM3 under Changing CO2 Forcing. Part I: Adapting the Linear Radiative Kernel Technique to Feedback Calculations for a Broad Range of Forcings

Climate feedbacks vary strongly among climate models and continue to represent a major source of uncertainty in estimates of the response of climate to anthropogenic forcings. One method to evaluate feedbacks in global climate models is the radiative kernel technique, which is well suited for model intercomparison studies because of its computational efficiency. However, the usefulness of this ...

متن کامل

Influence of the Isolator Characteristics on the Response of the Isolated Buildings in the Near-FaultEarthquakes

Seismic base isolation are devices that used to limit the human and material damage caused by an earthquake. This devices diffuse the energy induced at the time of the earthquake before being transferred to the structure.The base isolated structures when subjected to the near-fault eathquakes which contain long-period velocity pulses that may coincide with the period of base isolated structures...

متن کامل

Radiative forcing and climate response

We examine the sensitivity of a climate model to a wide range of radiative forcings, including changes ofsolar irradiance, atmospheric CO2, 03, CFCs, clouds, aerosols, urface •bedo, and a "ghost" forcing introduced at arbitrary heights, latitudes, longitudes, easons, and times of day. We show that, in general, the climate response, specifically the global mean temperature change, issensitive to...

متن کامل

Orbital pacing and ocean circulation-induced collapses of the Mesoamerican monsoon over the past 22,000 y.

The dominant controls on global paleomonsoon strength include summer insolation driven by precession cycles, ocean circulation through its influence on atmospheric circulation, and sea-surface temperatures. However, few records from the summer North American Monsoon system are available to test for a synchronous response with other global monsoons to shared forcings. In particular, the monsoon ...

متن کامل

Separation of aerosol fine- and coarse-mode radiative properties: Effect on the mineral dust longwave, direct radiative forcing

An improvement of the estimation of mineral dust longwave, direct radiative forcing is presented. It is based on recent developments that combine Sun photometer and multiwavelength lidar data to retrieve range-resolved coarseand fine-mode extinction coefficients. The forcings are calculated separately for each mode, and their sum is compared to the classical approach in which only the total ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 6  شماره 

صفحات  -

تاریخ انتشار 2016